Menu

El ADN, la llave maestra de la evolución humana

Los avances en genética incorporan matices fundamentales al clásico debate sobre si nacemos o nos hacemos. Las mutaciones esconden la clave de esta revolución en ciernes



Como objeto químico, el ADN puede reclamar una nutrida lista de padres: Mendel, Bateson, Luria, Delbrück, McClintock, Chargaff, Franklin, Watson, Crick, Venter. Como objeto de polémica, sin embargo, el ADN se puede rastrear hasta un solo nombre, y uno bien notable. El de Francis Galton, el primo listo de Darwin, como se le llama a veces con ingeniosa mala uva (contra Darwin, se entiende).

Fue Galton quien planteó la forma moderna del gran debate “naturaleza contra crianza” (tiene más sonoridad en inglés: nature vs nurture). ¿Nacemos o nos hacemos? El ADN se suele identificar con el “nacemos”, y el aprendizaje, con el “nos hacemos”. Pero esto no es más que un error generalizado y persistente. La realidad es mucho más interesante que todo eso.

El ADN es la forma en que la crianza se graba en nuestra naturaleza. El zoólogo y escritor británico Matt Ridley lo llama nature via nurture, a la naturaleza mediante la crianza, en una solvente paráfrasis del dilema galtoniano. Esta es la clave para entender el ADN como objeto de polémica.

Pese a la actual manía de las redes sociales, el mejor índice para evaluar la importancia de un problema sigue siendo la edición de los mejores libros. Y el ADN se ha llevado cuatro de estos óscar en los últimos meses. Mi gran familia europea, de Karin Bojs; El ADN dictador, de Miguel Pita; El gen, de Siddhartha Mukherjee, y Breve historia de todos los que han vivido, de Adam Rutherford

Tomemos el cáncer. Pocos cánceres son hereditarios, pero todos son genéticos, porque se deben a una acumulación de mutaciones en el texto del ADN de nuestras células. Cada una de nuestras neuronas o de nuestras células del hígado lleva una copia del genoma humano entero y gracias a eso puede funcionar. El ADN no es solo el vehículo de la herencia de padres a hijos, sino también el manual de funcionamiento de cada una de nuestras células durante toda nuestra vida.

El tratamiento del cáncer ya se está beneficiando de la tecnología del ADN, pese a que la oncología genómica está solo en sus comienzos. Los líderes de esta disciplina, como Bert Vogelstein, calculan que los principales tumores se deben a la acumulación a lo largo de la vida de media docena de mutaciones clave de entre las miles que acumula cualquiera de nuestras células, y en particular las cancerígenas. Estas mutaciones son distintas en cada tipo de tumor. En las mujeres con cáncer de mama, por ejemplo, ya es una práctica común analizar sus genes clave, porque de ello depende el tratamiento óptimo, sea una modesta quimio o una radical extirpación preventiva de las mamas. Esta estrategia se está generalizando en otros tipos de cáncer.

Entonces, ¿el cáncer es naturaleza o crianza? Es las dos cosas. Todos hemos visto esas fotos de una familia en la que tres generaciones de mujeres han muerto de cáncer de mama. En este caso, la herencia es la que pesa: las mutaciones con las que esas mujeres nacieron fueron la causa de su destino fatal. Un caso más común es que alguna mutación u otra venga puesta de nacimiento y que el resto se haya adquirido durante la vida, a veces por factores cancerígenos como el humo del tabaco o la radiación ultravioleta de la luz solar. Y otras veces —muchas otras veces—, por mero azar. Este es un concepto importante al que dedicaremos un párrafo.

Los últimos resultados de los grandes proyectos de genómica del cáncer demuestran que, en efecto, un tercio de los cánceres que afligen al mundo se deben a hábitos de vida arriesgados, como fumar, abrasarse en la playa o comer más de lo estrictamente aconsejable. Pero los dos tercios restantes no son culpa del paciente, sino producto del azar. Desde que el óvulo y el espermatozoide se fecundan, nuestras células se dividen cientos, miles o decenas de miles de veces, según a qué tipo pertenezcan. En cada una de esas divisiones hay que replicar el genoma entero, hecho de 3.000 millones de letras (las bases del ADN, gatacca…), y por muy preciso que sea el sistema de replicación del ADN, ocurren errores que se propagan a las siguientes generaciones celulares. De ese azar provienen dos de cada tres cánceres.

Pero, sea cual sea el origen de una mutación clave —o sea de quien sea la culpa de que haya ocurrido—, pocos científicos y médicos dudan de que su detección sea esencial para decidir el tratamiento. El ADN es naturaleza y crianza o, como diría Ridley, naturaleza por vía de crianza. Durante nuestra vida, el entorno y el mero azar se hacen carne en la secuencia genética de cada una de nuestras células.

El cáncer es un buen ejemplo para ilustrar las complejas armonías internas de la cuestión “nace o se hace” que centra nuestro debate. Pero es solo un ejemplo. El desarrollo del cerebro y la enfermedad mental es un tópico muy relacionado con este tema, aunque no lo parezca. Fred Gage, del Instituto Salk de California, ha demostrado en los últimos años que nuestro cerebro es un mosaico de clones neuronales con genomas distintos. Como en el desarrollo del cáncer, las distintas zonas de nuestro cerebro han acumulado mutaciones durante la proliferación celular desde el desarrollo fetal hasta la vida adulta.

Hay varios tipos de mutaciones —la favorita de los teóricos es el cambio de una sola letra, como gatacca, gacacca—, pero la que más llama la atención en nuestro cerebro es de una naturaleza bien distinta. La mitad del genoma humano es un vertedero de residuos de transposones, o elementos móviles, segmentos de ADN que contienen la información (gatacca…) para sacar copias de sí mismos que se insertan en otros lugares del genoma.

Casi todos esos transposones son meros fósiles genómicos, pero Gage ha descubierto uno (su nombre es ­LINE 1) que sigue activo en mi genoma y en el tuyo, desocupado lector. Salta de un lugar a otro mientras nos desarrollamos en el útero y vivimos fuera de él, y sobre todo en las células destinadas a formar nuestro cerebro. Cuando LINE 1 cambia de posición en una célula madre del cerebro, todas sus descendientes heredan la nueva posición, aunque algunas de ellas añaden otro salto al anterior, y así sucesivamente.

No hay comentarios.:

Con tecnología de Blogger.