Menu

New form of mRNA regulation characterized

RNA, once thought to be a mere middleman between DNA and protein, is now recognized as the stage at which a host of regulatory processes can act to allow for flexibility in gene expression and thus the functions of cells and tissues.

In a new report in the journal Plant Cell, University of Pennsylvania biologists used material from both humans and plants to examine chemical modifications to messenger RNA, or mRNA, finding that the modifications appear to play a significant role in the process by which mRNAs either survive and become translated into protein or are targeted for degradation.

Their analyses also revealed that mRNAs that encode proteins involved in responses to stress were more likely than other mRNA molecules to be modified, a hint that the modifications may provide a mechanism by which organisms can respond dynamically, at the post-transcriptional level, when confronted with changes to their environment.
The research was led by Brian D. Gregory, an assistant professor in Penn's Department of Biology in the School of Arts & Sciences, and Lee E. Vandivier, a graduate student in Gregory's lab. Coauthors include Rafael Campos and Ian M. Silverman from the Gregory lab, and Pavel P. Kuksa and Li-San Wang from Penn's Perelman School of Medicine.
The snapshot of all RNA sequences present in an organism at one time is known as the transcriptome; in this study, researchers wanted to examine the epitranscriptome, or modifications to the sequences of RNA molecules that may go on to affect gene expression.
Gregory has pioneered new techniques to investigate how RNA is regulated, including a method that identifies the sites of interaction with RNA binding proteins, called PIP-seq. In this study, he, Vandivier and colleagues used another technique that Gregory and Wang together devised, called HAMR, for high-throughput annotation of modified ribonucleotides. The approach allows for the identification of nucleotides in RNA molecules that have been modified after being transcribed from DNA.
"With these changes you're increasing the potential chemical properties an RNA molecule can have," Gregory said. "Instead of just having A, C, U and G, you have almost every variation you can think of. "

Earlier work has found more than 100 of these types of covalent modifications, primarily in RNA molecules that do not code for proteins, such as transfer RNA and ribosomal RNA.

Con tecnología de Blogger.